Crionica, inmortalidad y transhumanismo

Es fascinante lo que cuenta el Dr.Kurzweil. Básicamente su mensaje es que estamos doblando nuestro ritmo de progreso a cada década que pasa debido a las herramientas que hemos desarrollado en la década anterior(ordenadores mas potentes, escaneres de mayor resolución etc,etc...)lo único que sucede es que como estamos al principio de este crecimiento exponencial aun no es perceptible dado que el doble de muy poco sigue siendo muy poco y el cuádruple también etc,etc...(aunque en realidad se nota de sobra si uno se para a pensar en el numero de noticias sobre avances técnicos y científicos que aparecen hoy cada mes y los compara con los que aparecían en los años 80)

Sin embargo yo nunca me di cuenta de lo brutal de este planteamiento hasta que alguien me lo explico numéricamente:

Lo que dice el Dr.Kurzweil es lo siguiente:
El progreso tecnológico de cada década va a ser el doble de rápido que la anterior, así que si comparamos la década 2001-2011 con la ultima del siglo XX, 1991-2001, sera el doble. LA década 2011-2021 el doble que la de 2001-2011, 4 veces la de 1991-2001


2001-2011 2x Respecto 1991-2001
2011-2021 4x Respecto 1991-2001
2021-2031 8x Respecto 1991-2001
2031-2041 16x Respecto 1991-2001
2041-2051 32x Respecto 1991-2001
2051-2061 64x Respecto 1991-2001
2061-2071 128x Respecto 1991-2001
2071-2081 256x Respecto 1991-2001
2081-2091 512x Respecto 1991-2001
2091-2101 1024x Respecto 1991-2001

Con un total de 2.000x en todo el siglo respecto a la ultima década del siglo XX. Eso es los mismo que decir que durante el siglo XXI se avanzara tanto como en 20.000 años con la misma velocidad de progreso que en el siglo XX. Imagínate lo que podríamos tener en el año 22.000, y es lo mismo que piensa Ray Kurzweil que tendremos en el 2100.

Saludos

La gente desprecia la crionica por considerar la reanimación de los fallecidos una quimera pero con pronósticos como estos aun va a ser extraño que no vuelvan antes de que acabe el siglo.:sudor

 
Whale Genes Offer Hints to Longer Life Spans
by Becky Oskin, Senior Writer

bowhead-whale.jpg


In a search for genes that fight off aging, researchers have now charted the bowhead whale genome.

Bowheads are filter feeders found only in the Arctic, and are some of the largest mammals on Earth. Old harpoon points found in bowheads suggest the whales live for some 200 years.

The scientists' search turned up several interesting genetic targets worthy of further study, said senior study author Joao Pedro de Magalhaes, a biologist and expert in aging science at the University of Liverpool in the United Kingdom. The results will be reported Tuesday (Jan. 6) in the journal Cell.

For instance, the researchers found that bowhead whales have unique mutations in a gene called ERCC1, which is involved in repairing damaged DNA. The mutations in this gene could provide protection against cancer, Magalhaes said. About 30 percent of people will develop some form of cancer during their lives, but whales seem to have a remarkably low cancer rate, despite their huge number of cells and long life span.

But not all genetic changes in whales are cancer related. The researchers also found that a gene called PCNA contains a section of DNA that has been duplicated. The gene is associated with cell growth and DNA repair, and the duplication could slow aging, Magalhaes said.

In a previous study of deep-diving Minke whales, researchers reported that genetic mutations involved in stress may help undo the damage caused when cells go without oxygen for long periods of time.

In the new study, the team found that bowhead whales are also missing a big chunk of a gene called UCP1, which helps control body temperature, Magalhaes noted. With all of the new genetic data, "there are other traits you can study, not just longevity," he said. [Whale Album: Giants of the Deep]

Magalhaes said he hopes to ultimately prolong human life by studying the genetic code of long-lived mammals other than humans, such as the bowhead whale and the disease-resistant naked mole rat.

"My own view is that different long-lived species use different tricks to evolve long life spans, and there aren't many genes in common," he said. "But you do find some common pathways, so there may be common patterns," Magalhaes told Live Science. "Looking at mechanisms that protect against disease is a really unexplored area of research."

The bowhead whale genome was sequenced using tissue collected from whales killed during the limited hunts allowed in Alaska and Greenland, the researchers reported. The whales are listed as endangered species in the United States and many other countries.

The team also examined the animals' transcriptome: how genes were expressed in major organs, including the heart, liver, brain, kidney, muscle, retina and testis.

All of the genomic data will be freely available online, Magalhaes said.

Fully grown bowhead whales are between 46 and 65 feet (14 and 20 meters) long. About one-third of that length comes their enormous heads and baleen-filled mouths. The baleen is a bristly structure that traps tons of tiny sea creatures each day, such as copepods and zooplankton.

Bowheads were commercially hunted until a global moratorium on whaling was established in 1996. There are an estimated 10,000 bowhead whales worldwide, up from about 3,000 when hunting peaked in the 1920s, according to the National Marine Fisheries Services.

Follow Becky Oskin @beckyoskin. Follow LiveScience @livescience,Facebook & Google+. Originally published on Live Science.

http://www.livescience.com/49320-bowhead-whale-genome-sequenced.html

Pues como dice el articulo están analizando el genoma de las ballenas que son el mamífero mas longevo(200 años)para averiguar que genes son los responsables de ello.Ya se esta hablando de incorporar genes de ballena a nuestro genoma para hacer que nuestras células sean igual de resistentes al envejecimiento.

Estoy convencido de que antes de que acabe el siglo seremos capaces de construir un ser humano ultralongevo gracias a un cóctel de genes de otras especies.Se pasara a vivir como los Númenóreanos de Tolkien aunque no creo que tardemos mucho en pasar de vivir como Númenóreanos a vivir como Elfos por lo que le pronostico una corta vida a esta etapa,la verdad...
 
Nanotubos de carbono como canales iónicos artificiales



Un estudio en el que ha participado el grupo de Nanomecánica de Membranas liderado por el profesor Ikerbasque Dr. Vadim Frolov en la Unidad de Biofísica de la UPV/EHU, sugiere que los nanotubos de carbono de pared simple podrían ser utilizados como andamio universal para ayudar a replicar las propiedades de los canales de las membranas celulares. Los resultados del estudio han sido publicados en Nature.

Estos canales artificiales podrían tener importantes usos bioingeniría en futuros tratamientos médicos: podrían usarse para el suministro específico y muy controlado de medicamentos, servir como base de una nueva generación de biosensores, de sistemas mejorados de secuenciación del ADN y como componentes de células artificiales.

Las membranas biológicas definen la arquitectura funcional de los sistemas vivos: son selectivamente permeables, mantienen la identidad química de las células y orgánulos intracelulares y regulan el intercambio de material entre ellos. El control del transporte de iones y pequeñas moléculas a través de las membranas celulares lo realizan proteínas altamente especializadas que canalizan estas moléculas a través de la membrana. Los recientes avances en nanotecnología y nanofabricación han permitido la síntesis y fabricación de compuestos artificiales destinados a cumplir las funciones de los canales transmembrana y de los transportadores. El comportamiento de estos compuestos artificiales es cada vez más parecido al de las proteínas celulares en sus características básicas: selectividad molecular, direccionamiento hacia la membrana y eficiencia del transporte. Sin embargo, todavía sigue siendo un reto crear un prototipo universal y versátil para fabricar canales con determinadas propiedades de transporte.

El estudio en el que ha participado el grupo del Dr. Vadim Frolov, profesor investigador Ikerbasque de la Unidad de Biofísica de la UPV/EHU, y dirigido por el Dr. Alex Noy de Lawrence Livermore National Laboratories (EE. UU.), sugiere que los nanotubos de carbono de pared simple (CNT) pueden utilizarse como estructura con propiedades similares de afinidad y de transporte que los canales proteicos. Los nanotubos son transportadores muy eficientes, debido a que su estrecho diámetro (de 1 nm aproximadamente) e interior hidrofóbico es muy similar a la estructura funcional general general de dichas proteínas.

Los investigadores han descubierto que los CNTs ultracortos cubiertos por moléculas de lípidos forman canales tanto en membranas artificiales como en las membranas de células vivas. Estas estructuras se mantienen estables en disolución y se insertan espontáneamente en las membranas. Asimismo, los investigadores han observado que los CNTs insertados en una membrana contienen propiedades de transporte comparables a las de los canales iónicos pequeños. Además, han evidenciado que tales CNTs también son capaces de transportar ADN.

Según explica Frolov, los mecanismos de transporte transmembrana mediante CNTs ultracortos requieren una investigación más extensa, por lo que el proyecto de colaboración entre los grupos de Lawrence Livermore National Laboratories y de la UPV/EHU no ha concluido todavía. Los científicos esperan que mediante modificaciones químicas sofisticadas, la optimización de los procesos de producción y la utilización de otros métodos de nanofabricación, puedan llegar a producir canales iónicos plenamente funcionales basados en CNTs ultracortos.

Referencia:

J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla, Luis R. Comolli, Frances I. Allen, Anna V. Shnyrova, Kang Rae Cho, D. Munoz, Y. MorrisWang, Costas P. Grigoropoulos, Caroline M. Ajo-Franklin, Vadim A. Frolov & A. Noy. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature, 30 october 2014, Vol. 514. DOI: 10.1038/nature13817

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

http://culturacientifica.com/2014/11/17/nanotubos-de-carbono-como-canales-ionicos-artificiales/
 
Pura Muñoz-Cánoves: "El envejecimiento no es gradual; llega de repente"
La investigadora de la Universitat Pompeu Fabra ha descubierto que hay una edad a partir de la cual los músculos dejan de regenerarse


Munoz-Canoves-ante-el-Parc-de-_54426409387_51351706917_600_226.jpg

Muñoz-Cánoves, ante el Parc de Recerca Biomèdica de Barcelona, donde se encuentra su laboratorio


"Hubo un momento en que no sabíamos qué dirección tomar. Teníamos unos datos que no entendíamos. Teníamos trabajo en otras investigaciones, dejamos unos meses el proyecto en barbecho", recuerda Pura Muñoz-Cánoves, investigadora de la Universitat Pompeu Fabra, quien destaca que en el equipo también tuvieron un papel importante Pedro Sousa-Víctor, Eusebio Perdiguero y Antonio Serrano. "Estuvimos unos cinco meses parados. Y después, cuando por fin comprendimos qué ocurría, pensamos: ¿pero cómo nadie ha visto esto antes, si está a la vista de todo el mundo? No lo habíamos visto porque iba contra el dogma, contra lo que todos pensábamos".

Volvamos al principio. ¿Qué datos no entendían?
Estábamos estudiando el envejecimiento. Concretamente, el envejecimiento de los músculos en ratones. Es una línea de investigación en la que hemos trabajado en los últimos seis años.

¿Por qué en los músculos?
Porque los músculos son muy importantes en el envejecimiento. Cuando nos hacemos mayores, perdemos masa muscular y nos volvemos más frágiles.

¿Y qué vieron en los experimentos con ratones?
Eran ratones de más de 20 meses, lo que equivale a unos 60 años para una persona. Vimos que unos tenían capacidad de regenerar sus músculos y otros no. Pero no sabíamos por qué.

¿Tenían alguna hipótesis?
Miramos qué ocurría en función de la edad. Entre los 20 y 24 meses, la mayoría regeneraban bien sus músculos. Entre los mayores de 28 meses, que corresponden a unos 80 años en personas, ninguno mantenía la capacidad de regeneración muscular.

Por lo tanto, a mayor edad, menos regeneración.
No es tan simple. Pensábamos que el envejecimiento era un proceso gradual. Por lo tanto, esperábamos que la capacidad de regenerar los músculos se perdiera progresivamente. Pero lo que veíamos no era una pérdida progresiva, sino que unos ratones tenían esta capacidad y otros no.

¿Qué hicieron entonces?
Comparamos qué genes estaban activos entre los ratones que mantenían su capacidad de regeneración y los que la habían perdido.

¿Y la respuesta fue?
p16.

¿Qué significa p16?
Es una proteína que frena la división de las células. Se ha estudiado principalmente por su acción contra el cáncer. Estaba presente en las células madre musculares de los ratones que habían perdido la capacidad de regeneración; y ausente en los ratones que aún la mantenían. En cuanto nos dimos cuenta de esto, lo entendimos todo.

¿Qué es lo que entendieron?
Que el envejecimiento de los músculos no es un proceso gradual como pensábamos. Llega de repente cuando se activa la proteína p16. Fue entonces cuando nos dijimos: "Pero ¿cómo no habíamos pensado en esto antes?".

¿Por qué decía que está a la vista de todo el mundo?
Porque todos hemos visto a personas mayores que van cumpliendo años y están bien hasta que de pronto decaen de forma muy rápida. Y, cuando una se para a pensarlo, hasta es lógico. Las células, en las que todo está interconectado, van resistiendo hasta que llegan a un punto de ruptura en que el sistema se colapsa. Es como en un coche viejo.

¿Por lo tanto, lo que han descubierto en músculos se puede extrapolar a otros tejidos?
No lo hemos estudiado, pero pienso que sí. Un grupo de investigación de Estados Unidos ha encontrado que la p16 está relacionada con el envejecimiento del tejido graso y de tejidos del ojo.

¿Se puede prevenir o retrasar la aparición de p16?
Pienso que practicar actividad física o tener una dieta saludable tal vez pueda retrasarlo, pero es algo que hay que investigar más a fondo.

¿Cuando se llega al punto de ruptura, es irreversible?
Esperamos que no. Hemos observado que, si se eliminan las células que producen la proteína p16, el tejido muscular rejuvenece. Es decir, recupera su capacidad de regenerarse.

Pero si la p16 protege del cáncer, ¿no es arriesgado retirarla?
Lo sería si la elimináramos de manera permanente. Pero en los experimentos en que la hemos retirado de manera transitoria, hemos restaurado la capacidad de regenerar el músculo sin que ningún ratón haya enfermado.

¿Para quién cree que sería útil este tratamiento?
Sobre todo para personas mayores que han sufrido una caída o que corren riesgo de caerse. En estos casos, la capacidad de regenerar la masa muscular es muy importante para mantener la calidad de vida.

http://www.lavanguardia.com/vanguar...-envejecimiento-no-gradual-llega-repente.html
 
New class of drugs dramatically increases healthy lifespan, mouse study suggests
Date:
March 9, 2015

Source:
Scripps Research Institute

Summary:
Scientists have identified a new class of drugs that in animal models dramatically slows the aging process -- alleviating symptoms of frailty, improving cardiac function and extending a healthy lifespan.

150309144823-large.jpg

Scientists report that a new class of drugs dramatically slows the aging process in mice. Will it also work in humans?
Credit: © Ivonne Wierink / Fotolia


A research team from The Scripps Research Institute (TSRI), Mayo Clinic and other institutions has identified a new class of drugs that in animal models dramatically slows the aging process -- alleviating symptoms of frailty, improving cardiac function and extending a healthy lifespan.

The new research was published March 9 online ahead of print by the journal Aging Cell.

The scientists coined the term "senolytics" for the new class of drugs.

"We view this study as a big, first step toward developing treatments that can be given safely to patients to extend healthspan or to treat age-related diseases and disorders," said TSRI Professor Paul Robbins, PhD, who with Associate Professor Laura Niedernhofer, MD, PhD, led the research efforts for the paper at Scripps Florida. "When senolytic agents, like the combination we identified, are used clinically, the results could be transformative."

"The prototypes of these senolytic agents have more than proven their ability to alleviate multiple characteristics associated with aging," said Mayo Clinic Professor James Kirkland, MD, PhD, senior author of the new study. "It may eventually become feasible to delay, prevent, alleviate or even reverse multiple chronic diseases and disabilities as a group, instead of just one at a time."

Finding the Target

Senescent cells -- cells that have stopped dividing -- accumulate with age and accelerate the aging process. Since the "healthspan" (time free of disease) in mice is enhanced by killing off these cells, the scientists reasoned that finding treatments that accomplish this in humans could have tremendous potential.

The scientists were faced with the question, though, of how to identify and target senescent cells without damaging other cells.

The team suspected that senescent cells' resistance to death by stress and damage could provide a clue. Indeed, using transcript analysis, the researchers found that, like cancer cells, senescent cells have increased expression of "pro-survival networks" that help them resist apoptosis or programmed cell death. This finding provided key criteria to search for potential drug candidates.

Using these criteria, the team homed in on two available compounds -- the cancer drug dasatinib (sold under the trade name Sprycel®) and quercetin, a natural compound sold as a supplement that acts as an antihistamine and anti-inflammatory.

Further testing in cell culture showed these compounds do indeed selectively induce death of senescent cells. The two compounds had different strong points. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse bone marrow stem cells. A combination of the two was most effective overall.

Remarkable Results

Next, the team looked at how these drugs affected health and aging in mice.

"In animal models, the compounds improved cardiovascular function and exercise endurance, reduced osteoporosis and frailty, and extended healthspan," said Niedernhofer, whose animal models of accelerated aging were used extensively in the study. "Remarkably, in some cases, these drugs did so with only a single course of treatment."

In old mice, cardiovascular function was improved within five days of a single dose of the drugs. A single dose of a combination of the drugs led to improved exercise capacity in animals weakened by radiation therapy used for cancer. The effect lasted for at least seven months following treatment with the drugs. Periodic drug administration of mice with accelerated aging extended the healthspan in the animals, delaying age-related symptoms, spine degeneration and osteoporosis.

The authors caution that more testing is needed before use in humans. They also note both drugs in the study have possible side effects, at least with long-term treatment.

The researchers, however, remain upbeat about their findings' potential. "Senescence is involved in a number of diseases and pathologies so there could be any number of applications for these and similar compounds," Robbins said. "Also, we anticipate that treatment with senolytic drugs to clear damaged cells would be infrequent, reducing the chance of side effects."


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.

Journal Reference:




    • Yi Zhu, Tamara Tchkonia, Tamar Pirtskhalava, Adam Gower, Husheng Ding, Nino Giorgadze, Allyson K. Palmer, Yuji Ikeno, Gene Borden, Marc Lenburg, Steven P. O'Hara, Nicholas F. LaRusso, Jordan D. Miller, Carolyn M. Roos, Grace C. Verzosa, Nathan K. LeBrasseur, Jonathan D. Wren, Joshua N. Farr, Sundeep Khosla, Michael B. Stout, Sara J. McGowan, Heike Fuhrmann-Stroissnigg, Aditi U. Gurkar, Jing Zhao, Debora Colangelo, Akaitz Dorronsoro, Yuan Yuan Ling, Amira S. Barghouthy, Diana C. Navarro, Tokio Sano, Paul D. Robbins, Laura J. Niedernhofer, James L. Kirkland. The Achilles’ Heel of Senescent Cells: From Transcriptome to Senolytic Drugs. Aging Cell, 2015; DOI: 10.1111/acel.12344
http://www.sciencedaily.com/releases/2015/03/150309144823.htm
 
Kill Senescent Cells Before They Kill You
Posted on March 13, 2015
Several readers have asked me to comment on the press release and preprint that came out of the Mayo Clinic this week. Researchers searched for ways to eliminate cells in the body that have become senescent and destructive. Their tests in cell cultures and in genetically-modified mice turned up two substances, one natural and cheap, the other patented and dear. I think theirs is a promising approach, and will soon offer substantial life extension in humans with minimal side-effects, but my guess is that the particular cocktail they have found will be left in the dust.

Here’s the Theory

Our stem cells divide through a lifetime, renewing our muscles, blood vessels, and especially skin and blood cells that turn over rapidly. But in the process, chromosomes in those stem cells lose their telomeres. When its chromosomes have telomeres that are too short, a cell becomes “senescent.” Senescent cells are not just sluggish and moribund, they actually poison the nearby tissue (creating more senescent cells) and poison the body with chemical signals (cytokines) that fan the flames of inflam-aging. This is called SASP, for “senescent-associated secretory phenotype”. A tiny number of senescent cells can do a great deal of damage.

Would we be better off without senescent cells? It was the insight of the Mayo Clinic’s Jan van Deursen to ask this question with an experiment four years ago. He genetically modified mice in such a way that senescent cells had a bomb and a trigger attached. By feeding the mice a molecule that matched the trigger, he could cause the senescent cells to self-destruct, leaving normal cells intact. He did a controlled experiment, comparing the same genetically-modified mice, with and without pulling the trigger. The result was eye-popping life extension in the mice that had their senescent cells removed. 20 to 25% increase in life span from a single treatment, fairly late in life [ref].

Just a decade ago, such discoveries would remain languishing in the lab for a maddeningly-long time. But it is a sign of the times that venture capital and even Big Pharma are investing in longevity science. Van Deursen’s discovery was quickly seized by half a dozen different labs around the world (including a for-profit spinoff by van Deursen himself). What they are looking for is a drug that will attack the 0.01% of senescent cells while leaving 99.99% of non-senescent cells unharmed.


The Research Strategy

The research group at Mayo/Scripps started with gene expression profiles for senescent cells, comparing them to profiles for non-senescent cells. This was used to identify targets for the drug. Van Deursen had used p16 to identify senescent cells. P16 is a gene that keeps senescent cells alive when they really should be eliminating themselves. The Mayo/Scripps team identified several other drug targets, but did not use p16. They used RNA interference to silence these genes, one at a time, to help identify effective strategies for differentially targeting the senescers. Then they screened 46 compounds to see which would best attack the targets they had identified.

The result was two drugs: quercetin seemed to work best for endothelial cells (in arteries), and dasatinib was best for fat stem cells. Quercetin is cheap and found in many herbs and berries; dasanatib is a patented chemotherapy agent, sold for a scandalously high price by Bristol Myers Squib. The team tested the combination Q+D for short-term health effects in mice, and found encouraging results.

Q + D

Quercetin is a common flavonoid, polycyclic, found in black currents, cilanthro, red onion, watercress, cranberries, and smaller amounts in many fruits and herbs. It is an anti-oxidant, but you know I’m not much impressed by that. Though it is natural, it is a mutagen, which means it breaks DNA. Substances like this would never be approved by the FDA, if they had to be approved by the FDA, but they don’t because they escape regulation as GRAS — “generally recognized as safe”. This is not to damn the stuff–many toxins have a beneficial effect in small doses. This is hormesis, a paradoxical but common and well-documented fact of longevity science.

But in the case of quercetin, it has been tried in longevity tests with mammals, and the results are not promising. In 1982, the first published study showed no life extension, and perhaps a slight shortening of life span in male mice. Stephen Spindler, our reality check for life extension claims, found that quercetin had zero effect on mouse life span in a 2013 study.

250px-Quercetin.svg.png


Dasatinib is a chemotherapy agent, sold by Bristol-Myers Squibb as Sprycel at thousands of dollars per dose for treatment of leukemia. Dasaitinib has been tested for toxicity but never for life extension.

300px-Dasatinib2DACS2.svg.png



To put this in perspective…

The gold standard for a life extension drug is that it works to extend life span in rodents. That’s because it’s too easy to extend life span in simpler lab models like worms and flies, but tests in humans overtax our patience. Even for mice, the test requires three years and hundreds of thousands of dollars, so researchers are motivated to screen different compounds with tests that can be done in a petri dish, or with short-term studies of physiological changes in live mice. This is exactly what the Mayo/Scripps team did, and it should have yielded good candidates for life extension drugs. But the result was a “good candidate” that had already been tried, and didn’t do so well.

Sad_Mouse.jpg


The reason that short-term benefits to the metabolism are not a good indicator of what might increase longevity is that body chemistry is complicated. Life span is tightly regulated, with a mind of its own. Some substances have short-term benefits, and the body over-compensates with a shorter life span. Anti-oxidants are a good example. Other substances do short-term damage, and again the body over-compensates and the result is a longer life span. Look at the way paraquat affects life span in worms!


The Bottom Line

I’m betting that the search for strategies that differentially kill senescent cells will soon lead to better drugs than quercetin or dasatinib.


http://joshmitteldorf.scienceblog.com/2015/03/13/kill-senescent-cells-before-they-kill-you/
 
Will.i.am: ‘Eventually 3D Printing Will Print People’
BY BRIAN KRASSENSTEIN


We all likely have realized by now that the rate of technological progress increases over time. For example, we will likely see as much progress in the next decade as we have in the last 30 years combined. This accelerating rate of development in technology ultimately will equate to a world alien to most of us, likely within many of our lifetimes.

There are few areas, if any, in which technology is developing faster than that of the 3D printing space. In the last several years alone we have gone from a society in which nearly no one had heard of the phrase ‘3D printing’ to one where it’s almost impossible to go a couple of days without hearing about it in one form or another.

So you may now be wondering just how quickly 3D printing will develop over the next few decades. Will we be 3D printing organs for transplantation? How about 3D printing street legal cars or even airplanes? How about entire living organisms? Okay, wait, what did I just say?

That’s right, one day, in the not too distant future we may be 3D printing entire living organisms, even entire human being. At least this may be the case if you ask the Chief Creative Officer of 3D Systems, who’s also one of the more recognizable entertainers of our time: will.i.am.



Yesterday will.i.am was on hand at Harrods in London to unveil his new line of EKOCYCLE merchandise, which includes items that will hopefully make consumers aware of the fact that waste can be a valuable resource in the creation of desirable lifestyle products. The EKOCYCLE line of products includes clothing and other accessories which are produced by recycled waste, in addition to the EKOCYCLE Cube 3D printer that can print with filament made with recycled plastics. At the event will.i.am was kind enough to sit down with Dezeen and comment on where he thinks 3D printing technology may be headed. His thoughts may certainly surprise some of you.

When Dan Howarth from Dezeen asked him how 3D printing going to change, his response was as follows:

“I’m going to say something controversial. Eventually 3D-printing will print people. That’s scary. I’m not saying I agree with it, I’m just saying what’s fact based on plausible growth in technology and Moore’s law.

So right now we can print in post-consumer plastics, which is awesome. We can print in aluminium, which is bigger machines and awesome. We can print in titanium, which is pretty freaking crazy and amazing. We can print in steel, which is freaking hardcore. You can print in chocolate, and that’s sweet. You can print in freaking protein, you can make freaking meat. You can print leather. You can print a liver.

So if you can print a liver or a kidney. God dang it, you’re going to be able to print a whole freaking person. And that’s scary. That’s when it’s like, whah! And I’m not saying I agree, but plausible growth would say that with multiple machines that print in different materials, you could print in protein an aluminium combo.”

Howarth then followed up, asking how far away from such capabilities are we? Will.i.am replied, “Our lifetime.”

So could we see entire humans being 3D printed within the next few decades? I think it’s possible. There are a few main obstacles we will certainly have to overcome. Within the next decade or two, nearly every human body part will be printable via bio-ink. The most important part of the human body, however — the brain — is going to be orders of magnitude more difficult because of its intricate web of synapses and neurotransmitters. The other inhibiting factor will be governments and religious groups, who may block progress on moral grounds.

It’s certainly an interesting time to be alive, as things our ancestors or even we could never have imagined will become a reality. There is no doubt that 3D printing will play a major role in our future, just how major is the only question.

Do you agree with will.i.am that 3D printers will be capable of fabricating entire human beings within our lifetime? Let’s hear your thoughts in the 3D Printing Humans forum thread on 3DPB.com.

http://3dprint.com/49195/will-i-am-3d-print-people/
 
LUCES Y SOMBRAS DEL TRANSHUMANISMO
Operación inmortalidad: “Me dijeron que lo hiciera en secreto, pero debe ser público”
Los grandes líderes de Silicon Valley están invirtiendo millones en empresas biotecnológicas. Y tienen un objetivo: burlar a la muerte
49b511b509c926dc963900ec603b9af1.jpg

De izquierda a derecha: Peter Thiel, Larry Ellison y Sean Parker. (Efe/Reuters)

En 2002 el fundador de PayPal, Peter Thiel (Alemania, 1967), vendió su empresa a eBay por 1.500 millones dólares. Desde entonces, se ha dedicado a dirigir varios fondos de inversión con un único objetivo: esquivar la muerte. No representa un caso aislado. Al igual que otros multimillonarios de su quinta, cree que la industria antienvejecimiento es un negocio boyante. Y no le falta razón. Según los datos de la consultora Global Industry Analysts, el sector mueve unas sumas de dinero cercanas a los 60.000 millones de euros al año, pese a que muchos de sus productos son aún intangibles e invendibles.

Poco importa. El entusiasmo en torno a los futuros logros de esta industria es mayúsculo y no sólo porque sus promotores piensen ganar muchísimo dinero, sino también porque, como aseguran todos –con un discurso que roza lomesiánico– los avances que traerá la biotecnología supondrán una revolución sin precedentes en la historia de la humanidad.

“Es posible y necesario eliminar el envejecimiento o incluso la muerte”


Estos empresarios invierten cientos de miles de millones con la certeza de que podrán reconstruir, regenerar y reprogramar los órganos vítales e, incluso, el ADN de las personas, para que vivamos (o más bien, vivan) más y mejor.

En una entrevista con el Daily Mail, el cirujano italiano Sergio Canavero, que planea realizar el primer transplante de cabeza de la historia en un plazo de dos años, reconoce que ha recibido llamadas de varios multimillonarios envejecidos interesados en hacerse con un nuevo cuerpo. Pero ha rechazado su dinero.

"Te puedo asegurar que hay varios fondos de inversión trabajando en prolongar la esperanza de vida que están bien financiados”, explica Canavero. "Estas personas se acercaron a mí y me dijeron, 'aquí está el dinero, pero queremos que tu participación permenezca en secreto'. Sin embargo, quiero que todo sea transparente. Para ser sincero, hacer la cirugía en un lugar secreto no es santo de mi devoción”. Ahora bien, reconoce que su último objetivo, al igual que el de los millonarios interesados no es otro que alcanzar la inmortalidad.

el-cirujano-sergio-canavero-grupo-de-neuromodulacion-avanzada-de-turin.jpg

El cirujano Sergio Canavero. (Grupo de Neuromodulación Avanzada de Turín)

La operación del que ha sido bautizado ya como Doctor Frankestein, no es el único proyecto para burlar el envejecimiento que parece sacado de un relato de ciencia ficción. El magnate ruso Dmitry Itskov planea crear un ciborg que albergue la conciencia humana tras la muerte y permita vivir a los hombres sin las ataduras del cuerpo. Está convencido de que “es posible y necesario eliminar el envejecimiento o incluso la muerte”, así como “superar los límites establecidos actualmente por las restricciones del cuerpo físico”.

Así lo cree también Thiel. A pies juntillas. “Creo que la evolución es un verdadero logro de la naturaleza”, aseguraba en una entrevista con The Washington Post. “Pero nuestra sociedad debería tratar de escapar de ella o trascenderla”.

Larry Ellison, fundador de Oracle, ha donado más de 430 millones de dólares a la investigación para retrasar el envejecimiento. Su intención, sencillamente, es burlar su propia muerte. Para él, como reconoció a su biógrafo, Mike Wilson,fallecer no tiene sentido. Y cree sinceramente que es algo que puede evitarse.

El transhumanismo como objetivo vital

Otro de estos nuevos visionarios es Bill Maris, jefe de Google Ventures, la empresa de capital riesgo del gigante de la tecnología. Este joven directivo recibe 425 millones de dólares al año para invertirlos en el proyecto que desee. Y tiene claro dónde colocar el dinero.

“Si me preguntas si es posible vivir hasta los 500 años la respuesta es sí”, asegura el directivo, neurólogo de formación, en una reveladora entrevista que protagonizó la portada de la revista Bloomberg Markets del pasado mes.


portada-de-bloomberg-markets-google-quiere-que-vivas-para-siempre.jpg

Portada de Bloomberg Markets: 'Google quiere que vivas para siempre'
Hasta la fecha, Google Ventures ha financiado a conocidas startups del Valle del Ssilicio como Uber, Nest o Cloudera, pero en 2014 Maris cambió por completo el objeto de sus inversiones. En 2013, la financiación de compañías relacionadas con el campo de la salud copó el 6% del presupuesto, el pasado año este porcentaje se elevó al 36% y, por lo que cuenta Maris, en 2015 se invertirá más dinero que nunca en este campo.

El libro de cabecera de este joven emprendedor es La singularidad está cerca: cuando los humanos transcendamos la biología (Lola Books), la obra cumbre de Raymond Kurzweill, eminente futurista, padrino de laSingularity University, y reconocido transhumanista, la filosofía vital que alumbra a todos estos nuevos filántropos

En La singularidad está cerca, Kurzweill asegura que, en torno a 2045, la capacidad de los ordenadores superará a la de los humanos, y la única forma que tendremos para superar este momento crítico –tantas veces abordado por la ciencia ficción– pasa por transformar nuestra biología para mejorar la especie.

Para Kurzweill, y todos los millonarios visionarios que apoyan (invirtiendo muchísimo dinero) sus teorías, el avance tecnológico mejorará las capacidades humanas, tanto a nivel físico como psicológico o intelectual, lo que hará que, con el tiempo, surja un nuevo tipo de ser humano, con extensas capacidades: más listo, más guapo y con una esperanza de vida muchísimo mayor.

“Actualmente, las ciencias de la vida cuentan con las herramientas para alcanzar cualquier cosa que tengamos la audacia de imaginar”

A la mayoría de los mortales todo esto les suena a pura ficción, pero Maris que, recordemos de nuevo, es el encargado de elegir los proyectos en los que Google va a invertir su dinero, es un convencido transhumanista, y ellos no se creen simples mortales. En su opinión, los avances en biología sintética y neurociencia “nos liberarán de nuestras limitaciones”. Y ha llegado el momento de poner toda la carne en el asador. Su trabajo está claro: encontrar las compañías que van a cambiar el mundo e invertir en ellas.

“Actualmente, las ciencias de la vida cuentan con las herramientas para alcanzar cualquier cosa que tengamos la audacia de imaginar”, asegura sin tapujos. “Sólo espero vivir lo suficiente para no morir”.

raymond-kurzwell-gene-driskell.jpg

Raymond Kurzwell. (Gene Driskell)

¿Promesa de futuro o futura burbuja?

Una de las startup estrella de la cartera de inversiones de Google Ventures es Foundation Medicine, una compañía que usa datos genéticos para elaborar herramientas que sirvan para diagnosticar el cáncer. En enero, la farmacéuticaRoche anunció su intención de adquirir una participación mayoritaria en la compañía, en una operación de más de 1.000 millones de dólares. El valor de las acciones de la empresa –cuyo 4% pertenece a Google Ventures– se dobló de un día para otro.

En 2011, cuando Maris invirtió en la compañía, su propuesta era puramente teórica. Sí, contaba con el apoyo de Eric Lander, una de las figuras detrás del Proyecto Genoma Humano, pero no tenían ningún producto comercialmente viable. Hoy venden dos productos: por un lado test genómicos, por otro una especie de Google para oncólogos –Interactive Cancer Explorer–, gracias al cual se puede buscar la última información clínica y científica para encontrar la mejor vía terapéutica para cada paciente.

No parece nada especialmente revolucionario, pero para Maris esta es la línea a seguir, y está convencido de que estas compañías empezarán a generar enormes beneficios más pronto que tarde.

“En 20 años, la quimioterapia parecerá tan primitiva como usar el telégrafo”

“Hace 20 años, sin la genómica, sólo podías tratar el cáncer con veneno”, explica el jefe de Google Ventures. “Esto es muy diferente a poder curar el cáncer haciendo ingeniería inversa sobre una célula madre. Hoy en día puedes invertir de verdad en una compañía que podrá curar el cáncer. En 20 años, la quimioterapia parecerá tan primitiva como usar el telégrafo”.

El problema, claro está, es que cada vez hay más compañías biotecnológicas, que prometen el oro y el moro, pero sólo tras reunir enormes cantidades de dinero y emplear muchísimo tiempo. Son empresas que requieren financiaciones millonarias, acuerdos con grandes compañías farmacéuticas y ensayos clínicos que duran años. Se trata, desde luego, de inversiones de riesgo. Pero ¿quién dijo miedo?

“Hay un montón de multimillonarios en Silicon Valley, pero al final estamos todos centrándonos en lo mismo”, asegura Maris. “Si te dieran la oportunidad de elegir ganar mucho dinero o encontrar una manera de que la gente viva más ¿qué elegirías? No queremos ganar una partida, estamos tratando de ganar el juego. Y es mejor vivir que morir”.

file-photo-of-peter-thiel-partner-of-founders-fund-speaks-during-the-panel-discussion-at-the-milken-institute-global-conference-in-beverly-hills-california.jpg

El fundador de PayPal, Peter Thiel, es un reconocido libertario y transhumanita. (Reuters)

El egoísmo del nuevo filántropo

Aunque muchos de estos nuevos empresarios citan a Bill Gates como una inspiración –no en vano ha sido el primer gran líder de Sillicon Valley–, la forma en la que entienden la filantropía es bien distinta. Como sugiere Ariana Eunjung en un interesante reportaje en The Washington Post, mientras el fundador de Microsoft ha centrado sus esfuerzos en mejorar las condiciones sanitarias –sobre todo de niños y madres– en los países en desarrollo, sus jóvenes sucesores se están centrando en todo lo contrario: mejorar el final de la vida para los habitantes (ricos) de los países desarrollados.

El propio Gates se ha mostrado receloso hacia esta nueva fiebreantienvejecimiento. En una entrevista con los usuarios del portal Redditaseguró que le parecía “bastante egocéntrico que las personas ricas financien iniciativas para poder vivir más mientras sigue habiendo malaria y tuberculosis”.

Hasta hace poco, la mayoría de filántropos donaba su dinero a hospitales y universidades, donde se realiza la investigación básica. Los nuevos ricos de hoy en día prefieren financiar empresas, controlar qué se está desarrollando y obtener resultados cuanto antes.

“Hacer que la ciencia progrese muy rápido no significa que lo haga mejor”

En muchos casos sus objetivos son absolutamente individualistas. Sean Parker, cofundador de Napster, sufre una severa alergia alimentaria y tiene familiares con otras enfermedades autoinmunes. Es por ello que ha donado millones de dólares para que avance la investigación en estos campos.

Entre los científicos este nuevo enfoque de la filantropía tiene sus defensores –pues aporta una enorme cantidad de dinero a los proyectos de investigación–, pero también sus detractores. Y es que buscar sólo resultados inmediatos tiene un gran inconveniente. “La ciencia es un conjunto de conocimientos y puede llevar mucho tiempo encontrar resultados”, explica en el reportaje del WP Laurie Zoloth, profesora de bioética de la Northwestern University. “En ocasiones no conocemos las respuestas en generaciones. Hacer que la ciencia progrese muy rápido no significa que lo haga mejor, a no ser que seas un filántropo envejecido y necesites respuestas antes de morir”.

Otros científicos son aún más duros. Preston Estep, director de gerontología de la Escuela de Medicina de Harvard cree que muchos de estos filántropos están financiando proyectos de pura pseudociencia, que se basan más en la imaginación que en la investigación sólida, y que ningún científico se toma en serio.

Y no hay nada malo en confiar en la imaginación, siempre que no se gasten los recursos con los que cuenta la humanidad en proyectos inservibles. “Es muy excitante y maravilloso ser parte de una especie que sueña a lo grande”, comenta Zoloth. “Pero también quiero ser parte de una especie que cuida de los pobres y los moribundos y me preocupa que pongamos toda nuestra atención en un futuro brillante que es sólo una fantasía y no en el mundo en que vivimos”.

http://www.elconfidencial.com/alma-...es-el-sueno-de-los-nuevos-filantropos_725677/
 
Artificial wombs: The coming era of motherless births

2012-02-23-artificial-womb-300x263.jpg


Scientifically, it’s calledectogenesis, a termcoined by J.B.S. Haldane in 1924. A hugely influential science popularizer, Haldane did for his generation what Carl Sagan did later in the century. He got people thinking and talking about the implications of science and technology on our civilization, and did not shy away from inventing new words in order to do so. Describing ectogenesis as pregnancy occurring in an artificial environment, from fertilization to birth, Haldane predicted that by 2074 this would account for more than 70 percent of human births.

His prediction may yet be on target.

In discussing the idea in his work Daedalus–a reference to the inventor in Greek mythology who, through his inventions, strived to bring humans to the level of the gods–Haldane was diving into issues of his time, namely eugenics and the first widespread debates over contraception and population control.

Whether Haldane’s view will prove correct about the specific timing of when ectogenesis might become popular, or the numbers of children born that way, it’s certain that he was correct that tAt the same time, he was right that the societal implications are sure to be significant as the age of motherless birth approaches. They will not be the same societal implications that were highlighted in Daedalus, however.

Technology developing in increments

Where are we on the road to ectogenesis right now? To begin, progress has definitely been rapid over the last 20-30 years. In the mid 1990s, Japanese investigators succeeded in maintaining goat fetuses for weeks in a machine containing artificial amniotic fluid. At the same time, the recent decades have seen rapid advancement in neonatal intensive care that is pushing back the minimum gestational age from which human fetuses can be kept alive. Today, it is possible for a preterm fetus to survive when removed from the mother at a gestational age of slightly less than 22 weeks. That’s only a little more than halfway through the pregnancy (normally 40 weeks). And while rescuing an infant delivered at such an early point requires sophisticated, expensive equipment and care, the capability continues to increase.

A comprehensive review published by the New York Academy of Sciencesthree years ago highlights a series of achievements by various research groups using ex vivo (out of the body) uterus environments to support mammalian fetuses early in pregnancy. Essentially, two areas of biotechnology are developing rapidly that potentially can enable ectogenesis in humans, and, along the way, what the authors of the Academy review callpartial ectogenesis.

Because a fetus develops substantially with respect to external form and internal organs during the second half of pregnancy, our current capability to deliver and maintain preterm infants actually is a kind of partial ectogenesis. Supported by all of the equipment in the neonatal intensive care unit (NICU), a premature infant continues its development as a normal fetus of the same gestational age would do inside the mother’s uterus, but with one important exception. Inside the womb, oxygenated, nourished blood comes in, and blood carrying waste goes out, through the placenta and umbilical cord. Once delivered, however, a preemie must breathe through its lungs, cleanse the blood with its liver and kidneys, and get nutrition through its gastrointestinal tract.

But because these organ systems, especially the lungs, are not really ready to do their job so early, there is a limit to how early a developing fetus can be transferred from womb to NICU. Known as viability, the limit definitely has been pushed back with special treatments given to the mother prior to delivery and, just after birth, directly into the preemie’s lungs, and with intensive support. But the 22 week gestational age may be around the absolute limit for survival for a fetus that will have to depend on lung-breathing, not to mention other organs, rather than its mother’s nourished blood.

Still, the capability to push back the limit is around the corner. One of the two developing key technologies is the artificial amniotic fluid filled environment that has continued to develop with laboratory animal models since the work with goats in the 1990s. The other area is embryo transfer. Not only can a developing mammal be transferred from the uterus of its own mother to that of a surrogate, but gradually investigators are reproducing the endometrium–the cell layer of the uterus that contains and nourishes the pregnancy–as a cell culture, or an in vitro model. The convergence of these technologies will make it possible to transfer a developing human into a system that includes the placenta and umbilical cord and supplies all consumables (oxygen and food), and removes all waste, directly through the blood.

Thus, survival and continuing development would not depend on the lungs and other organs being ready yet to do their job. Applying such a system to fetus delivered in the middle of pregnancy would constitute real partial ectogenesis. Furthermore, since bypassing the developing, not fully functional organs, stands to improve survival substantially, and might even decrease the costs of extreme premature birth, the movement of the technology from research to clinic is inevitable.

Once that happens, there will be no obstacle against pushing the limit further, toward full ectogenesis. But there will be no obstacle to pushing the limit akin to how lung viability has placed an obstacle to conventional pre-term care. At some point, an in vitro fertilized egg could be planted directly into the artificial womb, with no need for a natural uterus even for the early stages.

Societal implications

An artificial womb may sound futuristic, and in Haldane’s time this may have supported a perception that realizing the technology would go together with controlling the birth rate and eugenics controlling which humans come to life, and thus which genetic traits get passed down to future populations. But today, we could do these things without ectogenesis. We have plenty of contraceptive methods and can sterilize people, or make them more fertile, while pregnancies can be induced with implanted embryos made with in vitro fertilization.

If anyone is working on a eugenics program at present, they can use surrogate mothers and don’t really require an artificial uterus–unless, we imagine a society that routinely, forcefully sterilizes all females, so that whoever has the artificial uterus has a monopoly on reproduction, ectogenesis does not relate particularly to those 1920s issues. Instead, the artificial uterus would simply move the pregnancy outside of the woman’s body. When considering societal consequences, that’s the main factor that we need to keep in mind, and doing so we see that it does relate to many currently controversial issues.

Considering abortion, for instance, while the proposition that a fetus, even an embryo, is a person with a “right to life” is a religious belief that cannot be imposed on everyone else, the main argument for the right to choose is a woman’s right to control her body. If a developing embryo or fetus is not viable and the mother wants it out of her uterus, that’s her right.

But what happens once we have the technology to remove it from her without killing it and let the pregnancy continue in an artificial womb? Already, with NICU technology pushing back the survival limit, the timing of viability affecting the legality of abortion, has been challenged by abortion foes. The prospect of ectogenesis stands to turn the viability issue on its face, and it will be interesting to see where that leads.

While social conservatives might be receptive about what an artificial uterus might do to the abortion paradigm, make no mistake they’d probably not be happy that the technology also stands to make it much easier for male gay couples to have babies. All they’d need is an egg donor; no more need for a surrogate mother to take the embryo into her uterus and carry it for 40 weeks. That’s easier for any gay couple in terms of practicality, waiting periods, and money. The same thing goes for a transgender person wishing to have a child.

Finally, because of the sheer numbers, the artificial uterus could have major implications for heterosexual women with fully functional uteri. Many who want children of their own might prefer to forego pregnancy yet would hesitate to hire a human surrogate. Not only is it expensive, but the surrogate could grow fond of the fetus she’s carrying, so why bother taking the risk?

On the other hand, the mind set could be quite different if the surrogate were a high tech jar. It’s your baby with no worries about competing mothers. I’m not suggesting that all potential mothers would opt for this, but Haldane’s guess might not be so unrealistic in that it might end up being a substantial fraction of the population.

David Warmflash is an astrobiologist, physician and science writer. Follow @CosmicEvolution to read what he is saying on Twitter.

http://www.geneticliteracyproject.o...al-wombs-the-coming-era-of-motherless-births/
 
Para conocer mejor el proceso que pretenden combatir la criónica y el transhumanismo: :juas

----------------------------------------------​

Esto es lo que de verdad ocurre con nuestro cuerpo después de morir

Cuando nuestro corazón se para se ponen en marcha una larga cadena de sucesos que concluyen cuando el cuerpo desaparece por completo. Te explicamos en detalle qué podemos esperar al morir

Héctor G. Barnés
El Confidencial
, 17.05.2015
 
Tratamiento rejuvenece cerebro (hipocampo) y músculo en ratones actuando sobre células madre

Drug perks up old muscles and aging brains
By Robert Sanders, Media Relations | May , 2015

BERKELEY —
Whether you’re brainy, brawny or both, you may someday benefit from a drug found to rejuvenate aging brain and muscle tissue.


Images of cells in the brain’s hippocampus show that the growth factor TGF-beta1 (stained red) is barely present in young tissue but ubiquitous in old tissue, where it suppresses stem cell regeneration and contributes to aging.
Researchers at UC Berkeley have discovered that a small-molecule drug simultaneously perks up old stem cells in the brains and muscles of mice, a finding that could lead to drug interventions for humans that would make aging tissues throughout the body act young again.

“We established that you can use a single small molecule to rescue essential function in not only aged brain tissue but aged muscle,” said co-author David Schaffer, director of the Berkeley Stem Cell Center and a professor of chemical and biomolecular engineering. “That is good news, because if every tissue had a different molecular mechanism for aging, we wouldn’t be able to have a single intervention that rescues the function of multiple tissues.”

The drug interferes with the activity of a growth factor, transforming growth factor beta 1 (TGF-beta1), that Schaffer’s UC Berkeley colleague Irina Conboy showed over the past 10 years depresses the ability of various types of stem cells to renew tissue.

“Based on our earlier papers, the TGF-beta1 pathway seemed to be one of the main culprits in multi-tissue aging,” said Conboy, an associate professor of bioengineering. “That one protein, when upregulated, ages multiple stem cells in distinct organs, such as the brain, pancreas, heart and muscle. This is really the first demonstration that we can find a drug that makes the key TGF-beta1 pathway, which is elevated by aging, behave younger, thereby rejuvenating multiple organ systems.”

The UC Berkeley team reported its results in the current issue of the journal Oncotarget. Conboy and Schaffer are members of a consortium of faculty who study aging within the California Institute for Quantitative Biosciences (QB3).

Depressed stem cells lead to aging
Aging is ascribed, in part, to the failure of adult stem cells to generate replacements for damaged cells and thus repair the body’s tissues. Researchers have shown that this decreased stem cell activity is largely a result of inhibitory chemicals in the environment around the stem cell, some of them dumped there by the immune system as a result of chronic, low-level inflammation that is also a hallmark of aging.

In 2005, Conboy and her colleagues infused old mice with blood from young mice – a process called parabiosis – reinvigorating stem cells in the muscle, liver and brain/hippocampus and showing that the chemicals in young blood can actually rejuvenate the chemical environment of aging stem cells. Last year, doctors began a small trial to determine whether blood plasma from young people can help reverse brain damage in elderly Alzheimer’s patients.

Such therapies are impractical if not dangerous, however, so Conboy, Schaffer and others are trying to track down the specific chemicals that can be used safely and sustainably for maintaining the youthful environment for stem cells in many organs. One key chemical target for the multi-tissue rejuvenation is TGF-beta1, which tends to increase with age in all tissues of the body and which Conboy showed depresses stem cell activity when present at high levels.

Five years ago, Schaffer, who studies neural stem cells in the brain, teamed up with Conboy to look at TGF-beta1 activity in the hippocampus, an area of the brain important in memory and learning. Among the hallmarks of aging are a decline in learning, cognition and memory. In the new study, they showed that in old mice, the hippocampus has increased levels of TGF-beta1 similar to the levels in the bloodstream and other old tissue.


Drug makes old tissue cleverer


Microglia in the young brain (top) show little TGF-beta1,(green) as opposed to old brain (bottom).
The team then injected into the blood a chemical known to block the TGF-beta1 receptor and thus reduce the effect of TGF-beta1. This small molecule, an Alk5 kinase inhibitor already undergoing trials as an anticancer agent, successfully renewed stem cell function in both brain and muscle tissue of the same old animal, potentially making it stronger and more clever, Conboy said.

“The key TGF-beta1 regulatory pathway became reset to its young signaling levels, which also reduced tissue inflammation, hence promoting a more favorable environment for stem cell signaling,” she said. “You can simultaneously improve tissue repair and maintenance repair in completely different organs, muscle and brain.”

The researchers noted that this is only a first step toward a therapy, since other biochemical cues also regulate adult stem cell activity. Schaffer and Conboy’s research groups are now collaborating on a multi-pronged approach in which modulation of two key biochemical regulators might lead to safe restoration of stem cell responses in multiple aged and pathological tissues.

“The challenge ahead is to carefully retune the various signaling pathways in the stem cell environment, using a small number of chemicals, so that we end up recalibrating the environment to be youth-like,” Conboy said. “Dosage is going to be the key to rejuvenating the stem cell environment.”

Other co-authors of the paper are former graduate student Hanadie Yousef, now at Stanford University; and Michael Conboy, Adam Morgenthaler, Christina Schlesinger, Lukasz Bugaj, Preeti Paliwal and Christopher Greer of UC Berkeley’s bioengineering department and QB3.

The work was supported by grants from the National Institutes of Health, California Institute for Regenerative Medicine and a Rogers Family Foundation Bridging-the-Gap Award.

RELATED INFORMATION



Criogenizan y reaniman con éxito,a lo Futurama,al gusano C. elegans,con sus recuerdos intactos.

Cryonics Scientifically Proven To Work In Model Organism
By Louie Helm | on May 23 | 8 Comments






Ever since cryonics was first conceived of 50 years ago, people have been waiting for scientific proof that it might actually work. Sure, scientists have been able to indefinitely cryopreserve human embryos for the past 30 years. But what about something with memories and an identity?

Researchers have never proven they could revive an organism with its mind intact… until now:

Memory Retention in C. Elegans Demonstrated Following Cryropreservation

From the Abstract:

Can memory be retained after cryopreservation? […] Our results in testing memory retention after cryopreservation show that the mechanisms that regulate the odorant imprinting (a form of long-term memory) in C. elegans have not been modified by the process of vitrification or by slow freezing.

That’s amazing! Skeptics previous had room to complain that there was no scientific proof that memories or identity could survive cryonics. But that room is gone.

It’s the result I expected. But it’s still fantastic to see this experiment carried out and published.

Of course, not all studies check out. And when I first got my hands on the full journal article… I was a bit worried. In my experience, most studies, especially exciting studies, are some combination of: poorly designed, poorly controlled, under-powered, and subsequently mined for spurious “significant” results.

But my skepticism quickly turned to delight: Experimental endpoints were well-defined prior to measurement. Animal handling was done according to well-establish review-article documented methods. Materials were specified in enough detail to allow for widespread replication. A reported sub-result in the study on the survivability advantages of the SafeSpeed fast freezing/thawing method provides valuable replication of another exciting result that would have been scientifically notable even on its own. Appendices show how robust the measurements really were. It’s as though the researchers knew the standard complaints of science journalists and actually bothered to spend the extra hour or two planning a good study. So their results went from “standard and terrible” to “utterly world-class”. I know I keep telling scientists they should design and carry out their studies correctly. But it’s still breathtaking to see it done, even once.

The nematodes in this study clearly remembered what they learned prior to cryopreservation. The SafeSpeed fast freezing/thawing allowed for ~100% survivability. And the nematodes were cryopreserved for a full 2 weeks in the middle of their life. By rough analogy, this would be like cryopreserving a 35 year old human for 65 years, and then watching them be revived unharmed with all their memories and going on to live another 35 years. You know, something that would allow a human to live further into the future than anyone, ever in history.

Additionally, several experts in the field who I heard back from agreed that this was a “quite well-designed and well-executed study, and the results leave little doubt that long-term memory, at least as represented by olfactory imprinting in C. elegans, survives freezing with no detectable impairment.” They also felt similarly to me in the sense that even though “it’s an expected result”, it was still “good to see it in a journal publication”.

So scientists have proven that minds can be cryopreserved and successfully revived — with their memories intact. It’s been peer-reviewed and published in a good journal. And experts from the field who weren’t involved in the study agree the result looks impressive.

It may have only been nematodes, but it’s still a big deal.

Cryonics just went from something you could believe in based on a series of good hand-wavy arguments about how ice damage and protein cross-linking aren’t really that bad (plus it would take magic for all of your memories to be instantly erased the second your heart stops beating)… to something you can believe in because science demonstrates that it works. That’s a serious upgrade. I’m definitely pleased to see cryonics crossing over from scientific theory to scientific fact.

http://rockstarresearch.com/cryonics-scientifically-proven-to-work-in-model-organism/
 
Arriba Pie